If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8b^2+11b+5=0
a = -8; b = 11; c = +5;
Δ = b2-4ac
Δ = 112-4·(-8)·5
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{281}}{2*-8}=\frac{-11-\sqrt{281}}{-16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{281}}{2*-8}=\frac{-11+\sqrt{281}}{-16} $
| x/4=-10=20 | | 3x+40=5x-12 | | P=900n–2925. | | -4x-86=-11x+33 | | 4/5x+6-1/3x=2/5x+9 | | 3y/7+1/7=37 | | 7(x+3)=2x+1 | | 1/3(-6x-9)=3x-15-2x | | 5x-3(x+1)=5 | | (-10x-2=8) | | -4/5u=-20 | | 4.25*x=38.25 | | 5/8x-1/2=3/5x+3 | | -113+2x=30-9x | | 7=3x/5 | | 3-x=1/2(7+2x) | | 6=18x+x^2 | | 7x-4+6x=139 | | (-9)2+7x=1 | | x+18+15=180 | | 7x+6x=139 | | 87/8=x-3/4 | | 0.2x+1=3.4 | | x(2)+35=0 | | 0,5x+6=3 | | 3/2-2(x-2)=-5/2x+3 | | 4x-13+15=180 | | x(2)-169=0 | | 10^(3x-5)=7^(x) | | 12=36x+x^2 | | 3/8+5x=3/4x+2 | | 10-3k+4k=20 |